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Abstract

This article studies the optimal intertemporal allocation of resources devoted
to the prevention of deterministic epidemics that admit an endemic steady-
state. In a stylized ‘yeoman-farmer’ economy, the dynamics of the optimal
prevention depends on the interplay between the epidemiological characteris-
tics of the disease, the labour productivity and the intergenerational equity.
A minimal level of labour productivity is shown to be necessary to reduce
in the long run the prevalence rate of the epidemic. If this threshold is not
reached, the prevention is then at best temporary, simply slowing down the
spread of the epidemic disease. However, it may not optimal to undertake
temporary prevention. Conversely, if labour productivity is sufficiently high,
permanent allocation of resources to prevention is feasible but not necessarily
optimal. If it is the case, the prevention monotonically increases with time
for low initial prevalence rate, while it is decreasing or hump-shaped other-
wise. Finally, paths that yield to the eradication of the epidemic disease are
considered. Upon existence, such paths are optimal if the pure discount rate
is sufficiently low.
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1 Introduction

Epidemic diseases constitute a major health issue for which there is a very

large consensus on the legitimacy of governments interventions. Yet barely

no analysis has been undertaken to determine the socially optimal allocation

of resources to prevention of epidemics. In this article, we derive a welfare

criterion from individual preferences and give precise fundations on a gener-

ally held belief, according to which if prevention is socially desirable it should

begin as soon as possible. In fact, this statement does not hold in general.

Epidemics prevention is a legitimate topic for economics since, as argued

by Bloom and Canning [6], there is little doubt that resource constraints play

an important role in the spread of epidemics. Moreover diseases importantly

affect labor and capital markets and thus growth. However, Gersovitz and

Hammer [15] pointed out that it is only recently that economists have en-

tered the field. Most articles adopt a positive approach focusing on private

behaviors, such as individual choices on self-exposure to the risk (as in Geof-

fard and Philipson [17] and Kremer [21]), health expenditure (Momota et al.

[24]), human capital accumulation (Bell and Gersbach [4] and Corrigan et

al. [10]) or fertility (Young [30]). Some papers analyzes the effect of public

policies on private behavior (e.g. Geoffard and Philipson [18]), while others

consider optimal policy correcting for the obvious externalities the epidemics

generate (e.g. Gersovitz and Hammer [16] or Francis [13]).
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Even though only few papers in economics adopt a normative perspective,

there exists a rich mathematical epidemiology literature, that dates back

from Bernouilli [5]. Following Sethi [27] and Wickwire [29], it is common to

use optimal control techniques to define the desirable timing of vaccination,

screening or health promotion campaigns. In most cases these studies use

as a criterion a convex combination of the dynamic costs of the control and

of the number of infected individuals. Moreover, the time horizon is usually

finite and, in analytical models, the problem is linear with respect to the

control. Based on this approach Behncke [3] finds that the optimal solution

is, in general, such that the prevention effort is maximal on some initial

time interval and then set to zero. When the case of disease eradication

is considered, the problem is more complex since terminal conditions are

free (Barrett and Hoel [2]). Some economic studies (in particular Gersovitz

and Hammer [15] and Francis [13]) modify the criterion and use the present

discounted value of total income net of the costs of the disease and of the

control. To conclude we can safely state that most of the literature relies on

economic calculus and ignore welfare.

We propose an optimal control model in the tradition of Ramsey [26],

Cass [8] and Koopmans [22] in which the whole population is affected by an

epidemic disease whose dynamics is general and admits an endemic steady-

state. The social welfare function is the present discount value of the product
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of individual utility and the size of the population. We notably show how

this criteria relies on preferences. Introducing population is to avoid the

problem stressed by the optimal population literature (see notably Dasgupta

[11]) about maximizing the welfare of alive individuals only. Our work thus

extends Delfino and Simmons [12], Boucekkine et al. [7] and Goenka and Liu

[19], who consider specific epidemic dynamic processes, and Gersovitz and

Hammer [16], who proceed by simulations. A second important assumption

we make is about the production structure which is of the ‘yeoman farmer’

type and allow us to completely solve the model despite a general formulation

for the epidemic dynamics. The dynamics of the optimal prevention then

depends on the interplay between the epidemiological characteristics of the

disease, labour productivity and intergenerational equity.

We find that it may be optimal to reduce the prevalence rate of the epi-

demic in the long run only if labour productivity is above some minimal level.

If this threshold is not reached, prevention is then at best temporary, simply

slowing down the spread of the epidemic disease. However, it may not be

optimal to undertake temporary prevention. When instead labour produc-

tivity is sufficiently high, permanent allocation of resources to prevention is

feasible though not necessarily optimal. If permanent prevention is socially

optimal, the prevention effort monotonically increases with time for low ini-

tial prevalence rate, and is hump-shaped or decreasing otherwise. Hence our
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paper establishes that under a welfare criterion for social intertemporal opti-

mization a “the-sooner-the-better” strategy may not be the optimal one, in

contrast to Behncke [3]. This statement is however reversed when we consider

paths that yield to the eradication of the epidemic disease. They are char-

acterized by an increasing prevention for a finite interval of time and, once

the epidemics is eradicated, the prevention is zero. We show that upon exis-

tence, such paths are optimal if the pure discount rate is sufficiently small. In

that case, it consequently is socially desirable that prevention should begin

as soon as possible.

We begin by presenting the dynamics of the population affected by an

epidemic in section 2. The epidemiological assumptions are put forward

and discussed using a standard example. In section 3 we set up the social

planner’s problem, then prove the existence of a solution and characterize

it. The dynamics of the optimal prevention is analyzed in section 4. In

the following section we ask whether it is socially optimal to eradicate the

epidemic disease. We show that, upon existence, eradication is optimal if the

pure discount rate is sufficiently low. Section 6 concludes.

2 The population dynamics

This section presents the general characterization of the epidemic dynamics

that will be used in the paper. The dynamics is constrained by some general
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assumptions that are satisfied, for instance, in a classical compartmental

epidemic model.

2.1 The general framework

Time is continuous and indexed by t ∈ R+. The population at time t,

whose size is denoted Pt, is affected by an epidemic disease and is thus

decomposed in two classes of individuals: the susceptible, who are healthy,

and the infected. The number of individual of each class is respectively

denoted St > 0 and It ≥ 0, and satisfy: Pt = St + It. It will be convenient

to define the relative share of infected individuals with respect to share of

susceptible ones as follows: at = It/St. This ratio is monotonically increasing

transformation of the prevalence rate of the epidemic, given by: at/ (1 + at),

and will be named as the prevalence index throughout the remaining of the

paper. Moreover, we consider the following general law of motion for at:

ȧt = g (ht, at) at, (1)

where the dot indicates the first derivative with respect to time and where

ht stands for the per capita expenditures devoted to the epidemic’s control.

These expenditures will be interpreted as prevention campaigns that are

supposed to modify individual’s behaviors and consequently to reduce the

spread of the epidemic (see, for instance, Castilho [9]). Note that these

expenditures can not stand for vaccination or screening expenditures, that
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yield a third class within the population. The growth rate of the prevalence

index, characterized by function g, is supposed to satisfy:

H1. g : R2+ → R, is C1, g01 (ht, at) < 0, g
0
2 (ht, at) < 0. Moreover, there exist

a∗ > 0 and h∗ > 0 such that g (0, a∗) = g (h∗, 0) = 0.

The growth rate of the prevalence index is thus supposed to decrease with at

which, of course, does not imply a monotonic relationship between ȧt and at.

In fact, Assumption H1 fully describes the kind of epidemic we are dealing

with. If there is no expenditure, the epidemic lasts forever but stabilizes

within the population: the prevalence index converges to the steady-state a∗.

Prevention campaigns may modify this dynamics. To fix ideas, let ht be an

exogenous constant. If this constant belongs to (0, h∗), the prevalence index

converges to another stable steady-state characterized by a lower prevalence

rate, and if the constant is larger than h∗, the epidemic vanishes as the

prevalence index converges to zero. Figures 1 illustrate such dynamics with

three different exogenous ht: 0, h1 ∈ (0, h∗) and h2 > h∗.
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Figures 1: The dynamics of at
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In the remaining of the paper, ht shall constitute the control optimally chosen

by a social planner. Remark that it is easy to extend our approach to other

kinds of epidemic dynamics. An alternative dynamics without expenditures

could be obtained by assuming: a∗ < 0. Such an epidemic would not exhibit

an endemic steady-state. The unique stable steady-state being the one with

a zero prevalence rate. Preventions campaigns may then also be launched

to accelerate the convergence process. Similarly, assuming that a∗ → +∞,

allow to consider an epidemic whose prevalence monotonically increases if

there is no control of it.

The population growth rate writes:

Ṗt

Pt
=

1

1 + at

Ã
Ṡt
St
+

İt
It
at

!
. (2)

For computational reasons, we assume that the growth rate is characterized

by a function denoted n (.) that satisfies:

H2. Ṗt/Pt = n (at). n : R+ → [n
¯
, n (0)], is C2, n0 (at) ≤ 0.

Assuming that the population growth rate does not depend on (St, It, ht) is

rather strong but is widely used in the epidemiological literature, notably in

the example developed below. Moreover, the assumption concerning the sign

of n0 (at) is not only more realistic but also, as it will be discussed throughout

the paper, more meaningful.

Our framework generalizes the rare works in economics that have analyt-
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ically studied the optimal dynamics of an epidemic: Delfino and Simmons

[12], Gersovitz and Hammer [15] and Barrett and Hoel [2] study a dynamics

similar to (1), but for a function g which is specified, while Boucekkine et

al. [7] consider a shock on the initial stock of the population describing an

epidemic with instantaneous effects and no endemic steady-state. Our as-

sumptions are now confronted to a two-class version of the widely used SIR

model (Kermack and Mac Kendrick [20]).

2.2 An example

Consider first an epidemic dynamics without control. The natural growth

rate of the susceptible population is given by β − µ, where β > 0 and µ > 0

respectively stand for the birth and the death rates, while the growth rate of

the infected population is β − µ − γ; parameter γ > 0 measuring the over-

mortality yield by the disease. Both vertical and horizontal contamination

are considered: first a proportion π ∈ [0, 1] of the children of infected people

are born healthy, while the others are infected. Moreover, as in May and

Anderson [23], it is assumed that the incidence of the epidemic follow a law

in frequency: contamination is proportional, up to a parameter σ > 0, to the

density of infected individuals in the total population. The dynamics of each
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subpopulation is therefore given by:

Ṡt = (β − µ)St + βπIt − σSt
It

St + It
, (3)

İt = [β (1− π)− µ− γ] It + σSt
It

St + It
. (4)

It can be easily shown that this system does not generically admit a steady-

state except: St = It = 0. Hence, the dynamics of the epidemic is better

understood using the variable at defined as: at = It/St. Using (3) and (4),

the dynamics of at solves:

ȧt = [σ − βπ − γ − βπat] at, (5)

which is a logistic equation. Therefore, if π > 0, the dynamics of at writes:

at =

(σ−βπ−γ)
βπ

a0

a0 +
³
(σ−βπ−γ)

βπ
− a0

´
e−(σ−βπ−γ)t

. (6)

Equation (5) admits (i) two steady-states if σ > βπ+γ: namely, â = 0, which

is unstable and a∗ = (σ − βπ − γ) /βπ, which is stable, (ii) one steady-

state if σ ≤ βπ + γ: namely, â = 0, which is stable. Consequently, if

the contamination coefficient σ is sufficiently low, the epidemic ultimately

disappears. Conversely, if σ is high, the epidemic survives as the prevalence

index stabilizes. If there is no vertical transmission (i.e. if π = 0), the only

possible steady state is â = 0, whose stability depends on the sign of σ − γ.

Using (3) and (4), the population growth rate n (at) solves:

n (at) = β − µ− γat
1 + at

, (7)
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which decreases in at; moreover, β − µ − γ ≤ n (at) < β − µ. The higher

bound for n (.) being the population growth rate without epidemic.

Suppose now that some expenditures may affect the epidemic dynamics

through the contamination rate. Let ht be the per capita expenditures and

the contamination coefficient at time t be a function that writes σ (ht) and

satisfies σ0 (ht) < 0. The dynamics of at is now given by:

ȧt = [σ (ht)− βπ − γ − βπat] at. (8)

It immediate to check that Assumption H1 is satisfied if σ (0) > βπ + γ and

that Assumption H2 is always satisfied.

3 The optimal control problem

This section establishes the optimal control problem we are going to study.

It is an infinite horizon framework with an economic structure and the pop-

ulation dynamics described in section 2. We first present and discusses the

social welfare function and then prove the existence of an optimal solution.

3.1 The social welfare function

The social welfare function we introduce is derived from the aggregation of

individual’s preferences. Each individual is supposed to belong to a dynasty

of altruistic individuals. Without epidemics, the growth rate of the dynasty

is the constant n (0). However, at each point of time, the epidemic disease
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may kill the dynasty. Denote by λt the probability as of time t = 0 that

the dynasty is still alive at time t. If alive at time t, the utility of a dynasty

member depends on consumption ct and is independent of the health status.

The utility function is then u (ct). If not alive at time t, the utility is supposed

to be the constant u (0)À −∞. The expected utility of the dynasty at time

t = 0 is therefore:

Z +∞

0

e−(ρ−n(0))t [λtu (ct) + (1− λt)u (0)] dt, (9)

where ρ is the pure discount rate which satisfies ρ > n (0). Moreover, function

u satisfies the following assumption:

H3. u : R+ → R+, u ∈ C3, u0 > 0, u00 < 0 and limc→0 u0(c) = +∞.

To obtain the social welfare function, we assume that the population is com-

posed by a continuum of identical dynasties, whose total size at time t = 0 is

P0. By the law of large numbers, the probability λt is, at the aggregate level,

the ratio between the size of the population and the size that would pre-

vail without epidemic. Thus: λt = Pt/P0e
n(0)t = e

t
0 [n(as)−n(0)]ds. The social

welfare function at time t = 0 is therefore simply obtained by multiplying

the function (9) by the initial size of the population P0, and rearranging to

obtain:

P0

Z +∞

0

e−
t
0 [ρ−n(as)]ds [u (ct)− u (0)] dt+

P0u (0)

ρ− n (0)
. (10)
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Maximizing this latter function is, in fact, equivalent to maximizing:

Z ∞

0

e−ρtPtu (ct) dt. (11)

The social planner function is thus the discounted value of the product of the

size of the population, Pt, and of the instantaneous utility of each individual.

For a given path of consumption, a larger population hence increases the so-

cial welfare. Consequently, the assumption n0 (at) < 0, implies that reducing

the number of infected individuals increases welfare, everything being equal.

3.2 The social planner’s program

The social planner faces the resource constraint of the economy. There is one

material good produced using labor and it is assumed that the productivity

of an infected individual is lower than the one of an susceptible individual.

Production per capita writes: αf (at) where f is a non increasing function

and α > 0 is a measure of the productivity of labor. The larger α, the

wealthier the economy. For instance, one may consider that the production

function is linear with respect to labor, with the productivity being equal to α

for susceptible individuals and to ηα for infected individual (with 0 ≤ η ≤ 1).

Then, in this example: f (at) = (1 + ηat) / (1 + at).

The produced good can be used for consumption or for the expenditures

devoted to the prevention campaign. The resource constraint written in per
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capita units is therefore:

ct + ht = αf (at) . (12)

Moreover, consumption, expenditures and the prevalence index should be

non negative. The program of the social planner is to maximize (11) subject

to (1) and (12). It writes:

max
ht

Z ∞

0

e−
t
0 θ(as)dsu (αf (at)− ht) dt,

s.t.

¯̄̄̄
¯̄ ȧt = g (ht, at) at,

0 ≤ ht ≤ αf (at) , at ≥ 0 and a0 ∈ (0, a∗) given.
(13)

where θ (at) = ρ−n (at). If there is no epidemic (i.e. if a0 = 0), the problem

is trivial: the optimal consumption is constant and equals the production

αf (0). Conversely, for a0 > 0, the problem is formally similar to an optimal

growth model with endogenous discounting. To reduce the length of the

proofs, we solved the case a0 ∈ (0, a∗), but the derivation of the case a0 > a∗

is a straightforward extension.

The intertemporal trade-off is the following: an increase in ht yields a re-

duction of both the immediate per-capita consumption and the prevalence of

the epidemic. The latter implies first an increase in future per-capita produc-

tion and therefore the prevention campaign can be understood as an invest-

ment. Moreover, reducing prevalence leads to a modification of the spread

between the discount rate and the population growth rate. For n0 (at) < 0,

an increase in ht implies a reduction of the spread, meaning a more equal
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treatment between generations as it increases the weight associated to the

utility of future generations.

3.3 Characterization of the solution

The program (13) is a non autonomous problem with endogenous discounting

but can be equivalently analyzed as a exogenous discounting problem using

the virtual time method described by Uzawa [28]. The following results are

then derived.

Lemma 1 There exists an optimal solution to program (13).

Proof. See the Appendix.

Lemma 2 An optimal path is necessarily a solution of the following system:⎧⎪⎪⎨⎪⎪⎩
ȧt =

g(ht,at)at
θ(at)

ḣt =
Φ(ht,at,ct)

−θ(at) u00(αf(at)−ht)
u0(αf(at)−ht)

+
g0011(ht,at)
g01(ht,at)

if ht > 0,

ȧt =
g(0,at)at
θ(at)

if ht = 0,

(14)

with ct = αf (at)− ht and:

Φ (ht, at, ct) =

∙
−αf 0 (at) u

00 (ct)
u0 (ct)

+
g0012 (ht, at)
g01 (ht, at)

+
θ0 (at)
θ (at)

¸
g (ht, at) at

+

∙
−αf 0 (at) + u (ct)

u0 (ct)
θ0 (at)
θ (at)

¸
g01 (ht, at) at

−g02 (ht, at) at + θ (at) . (15)
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Proof. See the Appendix.

From Lemma 2, it is straightforward to derive the optimal dynamics of con-

sumption. Moreover, while the optimal prevention may be equal to zero,

the optimal consumption is always positive, by the assumptions made on the

utility function.

4 The dynamics of the optimal prevention

This section studies the system of equations (14) that characterizes the dy-

namics of the optimal prevention. Paths that indefinitely exhibit a positive

prevalence are first studied and then compared those that lead to the erad-

ication of the epidemic. Geometrical illustration using phase diagrams are

also provided.

4.1 Steady-states and dynamics

Let us first consider paths that converge to the steady-states of (14). Define

a ‘corner steady-state’ as a steady-state for which the optimal prevention is

zero and an ‘interior steady-state’ as a steady-state for which the optimal

prevention is positive.

Given Assumption H1, the pair (0, a∗) is a corner steady-state. It satisfies

the following properties:
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Lemma 3 The corner steady-state (0, a∗) satisfies ht = 0 in its neighborhood

and is locally stable.

Proof. See the Appendix.

Whatever its initial dynamics, the optimal prevention is thus equal to zero af-

ter a finite date if the prevalence index converges to the steady-state without

prevention. The intuition is that (0, a∗) is not a steady-state for the interior

dynamics of system (14). Optimal prevention may hence not converge to

zero but only reach zero in a finite time. Moreover, it is never optimal to

reach a∗ in a finite time. As a consequence ht = 0 in the neighborhood of

(0, a∗), which rules out local indeterminacy.

Let us now study interior steady-states, for which prevention is positive.

Using (14), such a steady-state is a pair (h, a) that satisfies h ∈ (0, αf (a)),

a ∈ (0, a∗) and solves:

g (h, a) = 0, (16)

− [g02 (h, a) a− θ (a)] = −
∙
−αf 0 (a) + u (c)

u0 (c)
θ0 (a)
θ (a)

¸
g01 (h, a) a, (17)

where c = αf (a)− h. Then, a necessary condition for existence of an inte-

rior steady-state is the positivity of equation (17)’s RHS, which rewrites as

follows:

d

da

µ
u (αf (a)− h)

θ (a)

¶
< 0. (18)
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Condition (18) means that the discounted welfare of a generation in the long

run should be increased by a reduction of the epidemic. This condition is

always satisfied if a reduction of the epidemic implies a more equal treatment

between generations (i.e. if n0 (a) ≤ 0). Otherwise, the increase in utility im-

plied by a marginal decreases of a (measured by −αf 0 (a)u0 (c) /θ (a)) should

be larger than the negative impact on the endogenous discount (given by

θ0 (a)u (c) / (θ (a))2). Necessary and sufficient conditions (16) and (17) may

be rewritten in the following way:

u0 (c)
θ (a)

=
dȧ

dh
× d

da

µ
u (αf (a)− η (a))

θ (a)

¶
, (19)

where η (a) is the implicit relation between h and a derived from (16). The

contemporaneous desutility yield by a marginal increase in prevention should

equal the benefits of the reduction of the epidemic.

The following lemma studies the existence of interior steady-states.

Lemma 4 i) There exists ᾱ > 0, such that there is no interior steady-states

if α ≤ ᾱ. ii) There exists α̂ > ᾱ, such that there exist interior steady-states

if α ≥ α̂. iii) Upon existence, interior steady-states are locally unstable.

Proof. See the Appendix.

Lemma 4 shows the importance of labor productivity, or equivalently, of the

level of wealth per capita, on the prevalence index in steady-state: there are

thresholds below which there is an high prevalence and no prevention, and
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above which there is lower prevalence with some prevention. The intuition

of this result hinges on the concavity and on the Inada condition imposed

on the utility function: when the average production is low, resources are

exclusively devoted to consumption since a marginal decrease of it yields a

large desutility and since the marginal impact of prevention is independent

of the level of productivity. Consequently, an interior steady-state is more

likely to exist if the labor productivity is increased: the immediate marginal

desutility of prevention (i.e. the LHS of (19)) is then lowered while its impact

on future generations’ discounted utility (i.e. the RHS of (19)) is increased.

Importantly, interior steady-states are locally unstable. As it will be

done below, it is possible to characterize, under further conditions, saddle-

path steady-states. Hence, from Lemmas 3 and 4, we conclude there are at

most two kinds of paths that converge to a steady-state. First, we have a

family of paths converging to the corner steady-state (0, a∗). Second, upon

existence of a saddle-path steady-state, we have the stable arm. The paths

are candidates for optimality.

Suppose there is no interior steady-state. Paths converging to the corner

steady-state have been shown to stop prevention campaign after a finite date.

According to Lemma 3, we indeed have: ht = 0 in the long run. From this

date, the epidemic follows its own dynamics without intervention. The ques-

tion of optimality among these paths hinges, in fact, on the optimal choice
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of the date, denoted T , at which the prevention campaign stops. Pursuing

the campaign slows down the spread of the epidemic but is costly. To derive

the optimal date, we rewrite problem (13) as a problem with free terminal

conditions (aT , T ). We derive the following result:

Lemma 5 If α is sufficiently small or if a0 is sufficiently large, the optimal

path satisfies ht = 0 for all t ≥ 0. Conversely, if α is sufficiently large and

a0 is sufficiently small, the optimal path may exhibit positive ht for a finite

interval of time.

Proof. See the Appendix.

Lemma 3 showed that if there is no interior steady-state, the prevention

campaigns are at best temporary, slowing down an epidemic that necessarily

converges to its endemic steady-state. With Lemma 5, we claim that pre-

vention campaigns are launched if the labor productivity is sufficiently large.

Along the considered paths, the growth rate of the discount rates reduces,

which increase welfare. However, the dynamics of prevention is decreasing

with time, which may implies that consumption is increasing with time if the

impact of the prevalence index on the production per capita is low enough.

There is few chances that a path that exhibit an increase in both the discount

rate and consumption be optimal. Choosing ht = 0 for all t ≥ 0, implies on

the contrary that consumption continuously decreases. Conversely, when la-

bor productivity is large enough, the increase of the prevalence index strongly
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reduces the production per capita and may imply a consumption path that

decline with time. Such a behavior is more likely to be optimal. Lemma 5

also suggest that the initial prevalence and labour productivity play oppo-

site roles. Indeed, production per capita is supposed to decrease with the

prevalence rate.

Suppose now there exists at least one saddle-path steady-state. Let us

compare the unique path that converges to this steady-state to the family of

those which converge to the corner steady-state.

Lemma 6 Suppose there exists a saddle-path steady-state, denoted by
¡
h̄, ā

¢
.

The stable arm that converges to
¡
h̄, ā

¢
may not be optimal.

Proof. See the Appendix.

Lemma 6 shows that the existence of an interior steady-state does not implies

that the stable arm is necessarily optimal. In the proof, we show that using

a particular case where the long run cost of the prevention is higher that the

benefit in terms of production of having a lower share of infected individuals.

Then, there exist sets of initial condition such that the intertemporal utility

yield by the stable arm is lower than the one yield by the path converging

to the corner steady-state. Conversely, there exists initial conditions, upon

which the saddle-path is always preferred to those converging to the corner

steady-state.
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4.2 A graphical resolution

We now propose a geometrical representation of the results that have been

previously established by drawing the phase diagram associated to the system

of equations (14). To reduce the length of the proofs, an additional set of

restrictions is assumed:

H4. g0011 (h, a) ≥ 0, g0012 (h, a) = 0, and −u000 (c) /u00 (c) ≥ −u00 (c) /u0 (c).

Assumption H4 is sufficient to ensure that function (15) is differentiable

everywhere with respect to ht. The epidemic dynamics considered in As-

sumption H1 is now constrained by further assumptions on the impact of

prevention on ȧt: it is now convex and proportional to at. Moreover, the

utility function restricts to a representative individual with absolute risk

aversion lower than absolute prudence, a property satisfied by standard util-

ity functions including those with harmonic absolute risk aversion.

Lemma 7 i) The ȧ = 0 locus is downward slopping in the plane (a, h)

and is such that ȧ > 0 below the locus. ii) The ḣ = 0 locus is defined

by a function h = χ (a) that satisfies lima→0 χ (a) = −∞ and is such that

ḣ > 0 above the locus. iii) As α increases, the ḣ = 0 moves upward in

{(a, h) ∈ R2, g (h, a) > 0}.

Proof. See the Appendix.
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Lemma 7 gives enough information to draw the phase diagram associated to

system (14). Depending on the existence of interior steady-states, optimal

paths can hence be represented. Possible phase diagrams are given by figure

2a if there is no interior steady-states and by figure 2b if there are two interior

steady-states.
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Figure 2a: No interior steady-state

Note that we have represented the upper limit for h, given by function αf (a),

above the ȧ = 0 locus, but it as well can be below for some value of a. For an

initial condition a0 ∈ (0, a∗), there is hence a family of feasible paths: they
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converge toward the corner steady-state (0, a∗) and provided that the ḣ = 0

locus is above the horizontal axis, a positive level of prevention is possible for

a finite interval of time. The dynamics of the epidemic may be slowed down

for a while but, ultimately, the prevalence index reaches the long-run level

with no intervention. Another family of paths is drawn in Figure 2a: they

move to the vertical axis with a high level of prevention. These paths are

however not feasible since the prevention monotonously increases with time

and reaches in finite time the upper limit given by αf (a). The consumption

is there equal to zero and, consequently, the path is not optimal.

Labor productivity, which has been shown in the previous section to be

crucial for the existence of interior steady-states, has an impact on the dy-

namics. Geometrically, as α increases, the ḣ = 0 locus and the constraint

αf (a) move up. Since the ȧ = 0 locus is left unchanged, interior steady-

states are more likely to appear, as stated in lemma 4 and drawn in Figure
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2b.
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Figure 2b: Two interior steady-states

Two interior steady-states are represented in the phase diagram of Figure

3: a first one with a higher level of prevention expenditures and a lower

prevalence, which is saddle-path and a second one which is a repulsive cycle.

Hence, in addition to the families of paths that have been considered in the

case without interior steady-states, there is a unique path that converges

to the saddle-path steady-state. Remark that if there exist more than two

interior steady-states, the phase diagram would exhibit alternatively saddle-

paths and cycles. If the stable arm converging to the steady-state
¡
h̄, ā

¢
is
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optimal, the prevention monotonically increases with time if a0 < ā and can

be an hump shaped function of time if a0 > ā.

In this phase diagram analysis, we have insisted on the fact that on the

neighborhood of the vertical axis, the growth rate of the prevention is always

positive (i.e. ḣ > 0). This behavior is induced, using (14), by the assumption

of a "not too concave" relationship between the epidemic growth rate and

the prevention. More precisely, it is true if:

lim
h→0

g0011 (h, 0)
g01 (h, 0)

< −u
00 (αf (0))
u0 (αf (0))

, (20)

which is satisfied in Assumption H4. Consequently, any path that may con-

verge to the vertical axis, and thus to the eradication of the epidemic, nec-

essarily reaches in finite time the resource constraint and is therefore not

optimal. Remark that assuming the opposite inequality in (20) would not

change the statement about the impossibility to eradicate, but simply the

phase diagram. In the next section, we propose a slight change in our model

that allows to consider the eradication of the epidemic.

4.3 The eradication of the epidemic

To consider the eradication of the epidemic as a possible output of the model,

we assume an other dynamics of the prevalence index. We propose to replace

equation (1) by:

ȧt = g (ht, at − amin) (at − amin) if at > 0,

ȧt = 0 if at = 0,
(21)
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where amin > 0. Assumption H1 is left unchanged except for the domain of

function g which is now g : R+×[−amin,+∞[→ R. Equations (21) introduce

a positive threshold below which the epidemic disappear in a finite time, even

without control. Above this threshold, the dynamics has the same qualitative

property as the one we have considered before. A minimal prevalence within

the population is thus necessary for the epidemic to survive and spread within

the population. This threshold may be reach by the immigration of infected

individuals, for instance. The dynamics of at is thus represented in Figure 3,

in the case of no prevention.

6

-

ȧ

at
a∗

- ¾-¾
amin

Figure 3: The dynamics of at

As we consider a simple translation in function (1), Lemmas 1 to 6 still hold.

However, the phase diagram is modified and a new feasible path appears.

This path yields to the eradication of the epidemic in finite time. Figure 4a
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represents a possible phase diagram when there is no interior steady-state.
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Figure 4a: No interior steady-state

The family of paths that converges to the corner steady-state (0, a∗) is still

represented in Figure 4a. Moreover, there is a path that reaches the vertical

axis in finite time, along which prevention monotonically increases. More-

over, the path is unique as it necessarily goes through the intersection be-

tween the vertical line at amin and the ȧ = 0 locus. A necessary condition

for the existence of such a path is simply that those coordinates are feasible,

meaning that the h̆ such that g
³
h̆, amin

´
= 0 satisfies the following condi-
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tion: h̆ < f (amin). A path leading to eradication also appears when there

are interior steady-states, as it is shown by Figure 4b.
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ḣ = 0

-

?

-
6

¾
6

¾

?

Y
¾¾¾¾

*-

R
- -

αf(a)

6

I

amin

Figure 4b: Two interior steady-states

In the following lemma, we discuss on the optimality of the eradication of

the epidemic.

Lemma 8 Suppose there exists a path that leads to the eradication of the

epidemic. There is a threshold for the pure discount rate, denoted ρ̄, such

that for ρ < ρ̄, this path is optimal.

Proof. See the Appendix.
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When eradication is achieved, the discounted utility of generation t, (i.e.

u (ct) /θ (at)) is the highest possible since there is no prevention and the

prevalence index is zero. This however implies that generations that have

lived before the eradication have supported large reduction of their welfare

due to the necessarily high levels of expenditures devoted to prevention. The

path that yields to eradication is thus optimal if the pure discount rate is

sufficiently small.

5 Conclusion

In this article, we have exhibited the relative role of resource constraints and

individual preferences on the dynamic of the optimal prevention. Resources

constraints are crucial for defining which paths are feasible, while preferences,

and notably the discount rate, are used to characterize optimality. In the

limit case of no pure discounting, as in Ramsey [26], "the-sooner-the-better"

strategy is always optimal, provided there is an minimal threshold for the

epidemics.

Possible extensions of the present work may include the traditional de-

composition of the population in three classes, a production economy and/or

some endogenous growth factors. The size of the dynamic system would then

increase making the analytical resolution of the model unlikely. More impor-

tantly, future researches should incorporate delay and age structure effects as
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they are crucial for the HIV/AIDS epidemic. The next step is to incorporate

individual behaviors and decentralize the optimum.
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Appendix

Proof of Lemma 1. The program (13) is a non autonomous problem with en-

dogenous discounting. Let us rewrite it as an exogenous discounting problem

using the virtual time method1 notably used by Uzawa [28]. This method

is based on a change of time scale. First define: δt =
R t
0
θ (as) ds; since δ is

invertible from R+ to R+, it is possible to characterize t = τ (δ); moreover,

dδ = θ (at) dt. The social planner’s program (13) is then equivalent to:

max
h̃δ

Z ∞

0

e−δ
u
³
αf (ãδ)− h̃δ

´
θ (ãδ)

dδ,

s.t.

¯̄̄̄
¯̄̄ dãδ

dδ
=

g(h̃δ,ãδ)ãδ
θ(ãδ)

,

0 ≤ h̃δ ≤ αf (ãδ) , ãδ ≥ 0 and ã0 ∈ (0, a∗) given.
(22)

where
³
ãδ, h̃δ

´
≡ ¡aτ(δ), hτ(δ)¢. Since there is no ambiguity, we will neverthe-

less keep the usual notations (at, ht).

The existence problem is then standard. To apply classical results, it is

sufficient to show that feasible paths are uniformly bounded. Observe first

that the application a 7−→ g (h, a) a/θ (a) is locally lipschitz and that

|ȧ| ≤ |g (0, a) a|
ρ− n (0)

. (23)

Using Assumption H1, at belong to [0, a∗] which is a compact, non empty and

invariant set. Moreover since h is bounded, u is bounded and the objective is

1Francis and Kompas [14] propose a nice presentation of the method and of its condi-
tions of application.

31



well defined. Finally since h 7−→ u (αf (a)− h) /θ (a) is concave with respect

to h, we apply Theorem 3.6 of Balder [1] to conclude. ¤

Proof of Lemma 2. Let us consider problem (22). Within the domain, the

current Hamiltonian writes:

H (ht, at, µt) =
u (αf (at)− ht)

θ (at)
+ µt

g (ht, at) at
θ (at)

, (24)

where µt is the current costate variable. Necessary conditions are therefore:

−u0 (αf (at)− ht) + µtg
0
1 (ht, at) at = 0, (25)

and:

µ̇t = −αf 0 (at) u
0 (αf (at)− ht)

θ (at)
+

θ0 (at)
θ (a)

u (αf (at)− ht)

θ (a)

−µt
µ
g02 (ht, at) at + g (ht, at)

θ (at)
+

θ0 (at)
θ (at)

g (ht, at) at
θ (at)

− 1
¶
. (26)

By differentiating (25) with respect to t and using (26), we obtain the ex-

pression for ḣt.

Note that a path for which there exists at least one ht that satisfies ht =

αf (at) is not optimal. Define indeed ĥt ≡ αf (at)−ε, then with (24) compute

the following:

H
³
at, ĥt, µt

´
−H (at, αf (at) , µt)

=
u (ε)− u (0)

θ (at)
+ µt

h
g
³
ĥt, at

´
− g (αf (at) , at)

i
at

θ (at)
. (27)

32



Use the Inada condition (Assumption H3) to conclude that the optimal path

always satisfies ht < αf (at), which implies ct > 0. ¤

Proof of Lemma 3. In the neighborhood of (0, a∗) the interior solution of ht

solves:

ḣt

¯̄̄
(0,a∗)

=
− [g02 (0, a∗) a∗ − θ (a∗)] +

h
−αf 0 (a∗) + u(αf(a∗))

u0(αf(a∗))
θ0(a∗)
θ(a∗)

i
g01 (0, a

∗) a∗

−θ (a∗)
h
u00(αf(a∗))
u0(αf(a∗)) +

g0011(0,a∗)
g01(0,a∗)

i .

(28)

Thus, ḣt can be positive or negative, depending on parameters values. If

ḣt > 0, it is not optimal to consider a h such that (h, a) ∈ V and for which

h and a both increase. If ḣt < 0, there are two kind of trajectories. The

first ones reach h = 0 in finite time t0 and, given (14), satisfy ht = 0 for all

t ≥ t0. The second ones satisfy the interior dynamic of (14) and the corner

conditions (a0, at1 = a0) where t1 ¿ +∞. It can be easily shown that the

second kind of trajectories are not optimal. ¤

Proof of Lemma 4. As a preliminary, use (16) as an implicit equation to

define h = η (a), which, given Assumption H1, satisfies η0 (a) < 0 and η (a∗) =

0, and replace it in (17) to define the function φ (a, α) such that:

φ (a, α) = − [g02 (η (a) , a) a− θ (a)]

+

∙
−αf 0 (a) + u (αf (a)− η (a))

u0 (αf (a)− η (a))

θ0 (a)
θ (a)

¸
g01 (η (a) , a) a. (29)

Function φ (a, α) ∈ C2 (D (α)×R+,R) where:

D (α) =
©
a ∈ R+/αf (a)− η (a) > 0

ª
. (30)
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Then, an interior steady-state is a a ∈ (0, a∗) such that φ (a, α) = 0.

To prove claim i), use Lemma 2 and Assumption H3 to establish the following

limit:

lim
α→0

φ (a, α) = − [g02 (0, a) a− θ (a)] > 0, (31)

and conclude using the continuity of φ (., .) with respect to α.

Claim ii): since α 7−→ αf (a) is strictly increasing and since limα→∞ αf (a) =

∞, there exists ά such thatD (ά) = R+. Suppose α ≥ ά. Under Assumptions

H1 and H3, φ (a, α) decreases with α, φ (0, α) = θ (0) > 0 and:

φ (a∗, α) = − [g02 (0, a∗) a∗ − θ (a∗)]

+

∙
−αf 0 (a∗) + u (αf (a∗))

u0 (αf (a∗))
θ0 (a∗)
θ (a∗)

¸
g01 (0, a

∗) a∗, (32)

is negative for sufficiently large α.

Claim iii): the stability property is obtained by computing the trace of the

Jacobian matrix of system (14) on the neighborhood of any interior steady-

state. Since:

∂Φ (ht, at)

∂ht

¯̄̄̄
Φ(ht,at)=0

= 1− g02 (htat) at
θ (at)

, (33)

∂g (ht, at) at
∂at

¯̄̄̄
g(ht,at)=0

=
g02 (htat) at

θ (at)
, (34)

the trace is consequently equal to 1. The steady-states are not stable. ¤

Proof of Lemma 5. The idea of the proof is to incorporate in our problem

free terminal conditions. We proceed in three steps. 1/ We define the date
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T ≥ 0 such that the optimal prevention satisfies ht = 0 for all t ≥ T . Then we

characterize some properties of the dynamics of at that are useful for the next

steps. 2/ We rewrite the social planner problem letting (T, aT ) be choices

variables, and derive the necessary conditions for an optimal solution. 3/

Assuming there is no saddle-path steady-state, we characterize the optimal

pair (T, aT ) and consequently exhibit the optimal path within the family of

candidates that converge to the corner steady-state.

1/ For all t ≥ T ≥ 0, the dynamics of the epidemic satisfies the following

differential equation:

ȧt =
g (0, at)

θ (at)
at, (35)

with aT > 0 given. The general solution of equation (35) is a function of

(aT , t, T ), that can be denoted η (aT , t, T ). Our first claim is that the solution

of (35) can be written as a function of (aT , t− T ) that we denote â (aT , t− T ).

This claim can be shown by observing that η (aT , T, T ) = â (aT , 0) = aT and

that:

∂η (aT , t, T )

∂t
=

∂â (aT , t− T )

∂t
. (36)

Then, it is sufficient to apply the property of uniqueness of the solution of

the differential equation. Our second claim is that:

∂â (aT , z)

∂aT
=

g (0, â (aT , z)) â (aT , z)

g (0, aT ) aT

θ (aT )

θ (â (aT , z))
. (37)
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To prove that claim, observe that by definition of the dynamics:

∂â (aT , z)

∂z
=

g (0, â (aT , z))

θ (â (aT , z))
â (aT , z) . (38)

Thus:

∂2â (aT , z)

∂aT∂z
=

∂â (aT , z)

∂aT
× d

da

µ
g (0, a) a

θ (a)

¶¯̄̄̄
a=â(aT ,z)

. (39)

Integrating the latter equation yields:

∂â (aT , z)

∂aT
= e

â(aT ,z)
aT

d
da(

g(0,a)a
θ(a) )|a=â(aT ,u)du. (40)

Define v = â (aT , u) and thus dv =
∂â(aT ,u)

∂u
du = g(0,â(aT ,u))

θ(â(aT ,u))
â (aT , u) du. Apply

the change of variables to obtain:

∂â (aT , z)

∂aT
= e

â(aT ,z)
aT

d
da(

g(0,a)a
θ(a) )|a=v
g(0,v)v
θ(v)

dv

= e
[ln g(0,v)v

θ(v) ]
â(aT ,z)

aT . (41)

2/ The problem (22) can be rewritten as follows:

max
ht,aT ,T

Z T

0

e−t
u (αf (at)− ht)

θ (at)
dt+ e−TG (aT ) ,

s.t.

¯̄̄̄
¯̄̄̄
¯̄
ȧt =

g(ht,at)
θ(at)

at,

0 ≤ ht ≤ αf (at) , at ≥ 0 and a0 ∈ (0, a∗) given,

χ (aT , T ) = 0.

(42)

where G (aT ) is the continuation value which, using the first claim of step 1,

writes:

G (aT ) =

Z ∞

0

e−z
u (αf (â (aT , z)))

θ (â (aT , z))
dz, (43)

and where χ (aT , T ) = 0 is a terminal condition that says that aT is a solution

of (42) that satisfies hT = 0.
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The Lagrangian L (at, ht, µt, aT , T, λ) ≡ L writes:

L =

Z T

0

e−t
u (αf (at)− ht)

θ (at)
dt+ e−TG (aT )

+

Z T

0

e−tµt

µ
g (ht, at) at

θ (at)
− ȧt

¶
dt+ e−Tλχ (aT , T ) , (44)

where µt and λ are the current costate variables. Equivalently, we have:

L =

Z T

0

e−t
u (αf (at)− ht)

θ (at)
dt+ e−TG (aT ) +

Z T

0

e−tµt
g (ht, at)

θ (at)
atdt

+

Z T

0

e−tµ̇tatdt−
Z T

0

e−tµtatdt+ µ0a0 − e−TµTaT + e−Tλχ (aT , T ) .(45)

First order conditions are, for all t ∈ [0, T ]: (1), (25), (26), and the condition

on aT that write, using the second claim of step 1:

µT =
θ (aT )

g (0, aT ) aT

Z ∞

0

e−z
g (0, â (aT , z)) â (aT , z)

θ (â (aT , z))
η (aT , z) dz + λχ01 (aT , T ) ,

(46)

with:

η (aT , z) =
αf 0 (â (aT , z))u0 (αf (â (aT , z)))

θ (â (aT , z))
− u (αf (â (aT , z))) θ

0 (â (aT , z))
θ2 (â (aT , z))

(47)

Using integration by parts, observe that:

Z ∞

0

e−z
g (0, â (aT , z)) â (aT , z)

θ (â (aT , z))
η (aT , z) dz = −u (αf (aT ))

θ (aT )
+G (aT ) (48)

and, therefore, (46) rewrites:

µT =
θ (aT )

g (0, aT ) aT

∙
−u (αf (aT ))

θ (aT )
+G (aT )

¸
+ λχ01 (aT , T ) , (49)
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Finally, the first order condition on T writes:

L0T ≤ 0 if T = 0,

L0T = 0 if T ∈ ]0,∞[ ,

L0T ≥ 0 if T =∞,

(50)

where L0T is the partial derivative of the Lagrangian with respect to T , which

writes:

L0T = e−T
∙
u (αf (aT ))

θ (aT )
−G (aT ) + µT

g (0, aT )

θ (aT )
aT + λχ02 (aT , T )

¸
, (51)

which, using (25) evaluated at T , and (46), rewrites:

L0T = e−T
∙
u (αf (aT ))

θ (aT )
−G (aT ) +

u0 (αf (aT ))
g01 (0, aT )

g (0, aT )

θ (aT )

¸
+ e−T

χ02 (aT , T )
χ01 (aT , T )

×
∙
u0 (αf (aT ))
g01 (0, aT ) aT

+
u (αf (aT ))

g (0, aT ) aT
− θ (aT )

g (0, aT ) aT
G (aT )

¸
. (52)

The sign of L0T is not immediate.

3/ Suppose there is no interior steady-state. Paths that are candidates for

optimality converge to the corner steady-state (0, a∗) . Moreover, Lemma 3

has shown that there exists a T < ∞, such that ht = 0 for all t ≥ T .

Condition (50) characterizes this optimal T . We thus look at the sign of

(52). Remark first that applying the implicit functions theorem implies that:

daT
dT

= −χ
0
2 (aT , T )

χ01 (aT , T )
. (53)

Let us now define κ such that:

daT
dT

=
g (0, aT )

θ (aT )
aT − κ. (54)
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We now claim that κ > 0 if T > 0. To prove it, we consider dat/dt on the

neighborhood of aT for which we know that ht is small and equal to ε. Hence:

dat
dt

¯̄̄̄
t=T−

=
g (ε, at) at
θ (at)

=
g (0, at) at
θ (at)

+ ε
g01 (0, at) at

θ (at)
(55)

Since the optimal dat/dt should be lower with positive ht than without, and

since g01 (0, at) < 0, we obtain that κ > 0. Using the same argument, observe

that κ = 0 if T = 0. Observe now that (52) rewrites:

L0T = e−Tκ
θ (aT )

g (0, aT ) aT

∙
u0 (αf (aT ))

θ (aT )

g (0, aT )

g01 (0, aT )
+

u (αf (aT ))

θ (aT )
−G (aT )

¸
(56)

Using (43), (50) and (56), we define ϕ (x, α) such that:

ϕ (x, α) =
u0 (αf (x))

θ (x)

g (0, x)

g01 (0, x)
+

u (αf (x))

θ (x)
−
Z ∞

0

e−z
u (αf (â (x, z)))

θ (â (x, z))
dz,

(57)

and conclude that the optimal T is such that T = 0 if ϕ (x, α) < 0 and T ∈

(0,∞) if there exist x̂ ∈ [0, a∗] such that ϕ (x̂, α) = 0. Since â (0, z) = 0, one

has ϕ (0, α) < 0; moreover ϕ (a∗, α) = 0 and ϕ01 (a
∗, α) > 0. Conclude there

are generically a even number of x̂ within (0, a∗). Since limα→0 ϕ (x, α) =

−∞, limα→+∞ ϕ (x, α) > 0 and ϕ02 (x, α) > 0, we conclude that if α is suf-

ficiently large, there exist aT such that ht > 0 for all t < T . Finally, a

temporary prevention campaign is then launched if a0 < aT . ¤

Proof of Lemma 6. Let us denote by
¡
h̄, ā

¢
the interior steady-state and by
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(0, a∗) the corner steady-state. To prove the lemma, we compute the in-

tertemporal utilities for each paths in a particular case.

Suppose that a0 = ā < a∗. Consider two paths that are candidates for

optimality: the first one is given by: ht = h̄ and at = ā, and the second one

is given by ht = 0 and at = â (ā, t) (as defined in the first step of the proof

of Lemma 5). The intertemporal utility yield by the first path is:Z ∞

0

e−t
u
¡
αf (ā)− h̄

¢
θ (ā)

dt =
u
¡
αf (ā)− h̄

¢
θ (ā)

. (58)

The intertemporal utility yield by the second path is denoted U (ā) and

satisfies:

U (ā) =

Z ∞

0

e−t
u (αf (â (ā, t)))

θ (â (ā, t))
dt. (59)

Since U 0 (ā) < 0, conclude that U (ā) > U (a∗). Hence, the first path is not

optimal if:

u
¡
αf (ā)− h̄

¢
θ (ā)

<
u (αf (a∗))

θ (a∗)
, (60)

It is easy to check that the last inequality may not be satisfied for a pair¡
h̄, ā

¢
that satisfies: (16), (17). For instance use the following functions:

g (h, a) = e−h − [βπ (1 + a) + γ + δ] , (61)

f (a) =
1 + λa

1 + a
, (62)

u (c) = σc
1
σ , (63)

and the following parameters: α = 1.5, µ = 0.01, γ = 0.01, π = 0.9, β = 0.5,

ρ = 0.5, λ = 0.6, σ = 1/0.69. ¤
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Proof of Lemma 7. We consider successively the ȧ = 0 locus and the ḣ = 0

locus.

Claim i). The ȧ = 0 locus for all a > 0 is given by the implicit function

g (h, a) = 0. Given Assumption H1, the locus is downward slopping in the

plane (a, h), and is such that ȧ > 0 below the locus and ȧ < 0 above.

Claim ii). Using the definition of ḣ in (14) and Assumption H4, the ḣ = 0

locus is given by the function ψ (h, a, α) = 0 where:

ψ (h, a, α) =

∙
−αf 0 (a) u

00 (αf (a)− h)

u0 (αf (a)− h)
+

θ0 (a)
θ (a)

¸
g (h, a) a

+

∙
−αf 0 (a) + u (αf (a)− h)

u0 (αf (a)− h)

θ0 (a)
θ (a)

¸
g01 (h, a) a

−g02 (h, a) a+ θ (a) , (64)

which, using Assumptions H1, H3 and H4, satisfies ψ01 (h, a, α) > 0 for all

(h, a) below the ȧ = 0 locus (i.e. for g (h, a) > 0). It is then possible to define

the function χ such that h = χ (a, α), which satisfies: lima→0 χ (a, α) = −∞.

Using (14), compute, on the neighborhood of (0, 0), the interior solution of

ht to obtain:

ḣt

¯̄̄
(0,0)

= −
∙
u00 (αf (0))
u0 (αf (0))

+
g0011 (0, 0)
g01 (0, 0)

¸−1
, (65)

which is positive given the convexity of g (Assumption H4). Conclude that

ḣ > 0 above the locus and that ḣ < 0 below.

Claim iii). Define R = {(a, h) ∈ R2, g (h, a) > 0}. Using Assumptions H1,

H3 and H4, we have ψ03 (h, a, α) < 0 for all (h, a) such that g (h, a) > 0. As
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ψ01 (h, a, α) > 0 on R, the claim is proved. ¤

Proof of Lemma 8. A path that leads to eradication in a finite time T can

be characterized by {het , aet} for all t < T and by ht = at = 0 for all t ≥ 0.

This yields the following intertemporal utility:

Z T

0

e−t
u (αf (aet)− het)

θ (aet)
dt+ e−T

u (αf (0))

θ (0)
. (66)

For ρ → n (0), one has by definition θ (0) → 0, and therefore the intertem-

poral utility is infinite while intertemporal utilities yield by any other path

is finite. We conclude by continuity. ¤
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